[2016 Graduation Project 1] 基于数字微阵列的全场 OCT 结构照明系统研制

基于数字微阵列的全场 OCT 结构照明系统研究

课题简介

全场光学相干层析术 (Full-field Optial Coherence Tomography, FF-OCT)是一种非侵入无标记的高分辨生物组织成像技术,它结合低相干光源的白光干涉技术和显微物镜,以及面阵成像相机,对生物组织进行二维层析成像。FF-OCT 的原理与超声成像类似,但超声成像技术通常采用 3-40MHz 左右频率的超声波,通过接收反射回来的「回声」并将其可视化得到分辨率在 0.1-1mm 的图像;FF-OCT 则运用低相干光波,利用单次后向散射光保留光源相干性的特点,通过低相干光光源 的相干门把其他散射光排除在外,从而获得微米量级的生物样品内部信息。结合纵向扫描成像方式,可实现对生物组织三维结构微米量级的层析成像。

结构照明系统通常选择旋转光栅和空间光调制器实现结构照明的实施方案。但采用机械的方式来控制光栅的旋转和位移,其装置复杂,旋转和位移的速度较低,不同激发波长对应 ±1 级衍射角不一样,波长改变时需要调节光路。液晶空间光调制器虽然可以提高产生和控制结构条纹的速度和精度,但只能对偏振光进行调制。因此, 本项目拟采用 DMD 数字微镜阵列产生二值化的条纹,经由显微物镜衍射效应形成正弦化的照明光,这是实现超分辨显微成像的关键技术。

CleanShot 2019-10-17 at 21.15.20@2x

课题应完成的任务和对学生的要求

使用 Matlab 设计并验证结构光,搭建全场 OCT 的结构照明系统部分。

  1. 理解全场光学相干层析术的基本原理与系统调校方法
  2. 理解并掌握结构照明显微理论
  3. 使用 Matlab 模拟并设计基于数字微镜阵列的结构照明光
  4. 搭建基于数字微镜阵列与科勒照明的结构照明光系统

References

  1. M. G. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," Journal of microscopy 198, 82-87 (2000).
  2. M. G. L. Gustafsson, "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," Proceedings of the National Academy of Sciences of the United States of America 102, 13081-13086 (2005).
  3. F. Chasles, B. Dubertret, and A. C. Boccara, "Optimization and characterization of a structured illumination microscope," Optics Express 15, 16130-16140 (2007).
  4. M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, "Three-Dimensional Resolution Doubling in Wide-Field Fluorescence Microscopy by Structured Illumination," Biophysical Journal 94, 4957-4970 (2008).
  5. L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, and M. G. Gustafsson, "Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy," Science 320, 1332-1336 (2008).
  6. E. Auksorius, Y. Bromberg, R. Motiejūnaitė, A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, and G. J. Tearney, "Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications," Biomed. Opt. Express 3, 661-666 (2012).
  7. E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, "Structured illumination microscopy using unknown speckle patterns," Nature Photonics 6, 312 (2012).
  8. A. G. York, S. H. Parekh, D. D. Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, "Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy," Nature Methods 9, 749 (2012).
  9. J. Chen, X. Lv, and S. Zeng, "Doubling the resolution of spatial-light-modulator-based differential interference contrast microscopy by structured illumination," Opt. Lett. 38, 3219-3222 (2013).
  10. J. Chen, Y. Xu, X. Lv, X. Lai, and S. Zeng, "Super-resolution differential interference contrast microscopy by structured illumination," Optics express 21, 112-121 (2013).
  11. K. Patorski, M. Trusiak, and T. Tkaczyk, "Optically-sectioned two-shot structured illumination microscopy with Hilbert-Huang processing," Optics express 22, 9517-9527 (2014).
  12. P. W. Winter, A. G. York, D. D. Nogare, M. Ingaramo, R. Christensen, A. Chitnis, G. H. Patterson, and H. Shroff, "Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples," Optica 1, 181-191 (2014).
  13. M. Saxena, G. Eluru, and S. S. Gorthi, "Structured illumination microscopy," Adv. Opt. Photon. 7, 241-275 (2015).
  14. P. W. Winter, P. Chandris, R. S. Fischer, Y. Wu, C. M. Waterman, and H. Shroff, "Incoherent structured illumination improves optical sectioning and contrast in multiphoton super-resolution microscopy," Optics Express 23, 5327-5334 (2015).
  15. R. Yao, Q. Pian, and X. Intes, "Wide-field fluorescence molecular tomography with compressive sensing based preconditioning," Biomed. Opt. Express 6, 4887-4898 (2015).
  16. Y. Ruan, D. Dan, M. Zhang, M. Bai, M. Lei, B. Yao, and X. Yang, "Visualization of the 3D structures of small organisms via LED-SIM," Frontiers in Zoology 13, 26 (2016).
  17. K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, "Time-multiplexed structured illumination using a DMD for optical diffraction tomography," Opt. Lett. 42, 999-1002 (2017).
  18. O. Thouvenin, M. Fink, and A. C. Boccara, "Dynamic multimodal full-field optical coherence tomography and fluorescence structured illumination microscopy," Journal of biomedical optics 22, 026004 (2017).
  19. X. Jin, X. Ding, J. Tan, X. Yao, C. Shen, X. Zhou, C. Tan, S. Liu, and Z. Liu, "Structured illumination imaging without grating rotation based on mirror operation on 1D Fourier spectrum," Optics Express 27, 2016-2028 (2019).
  20. L.-H. Yeh, S. Chowdhury, N. A. Repina, and L. Waller, "Speckle-structured illumination for 3D phase and fluorescence computational microscopy," Biomed. Opt. Express 10, 3635-3653 (2019).
Sidebar